Документ подписан простой электронной подписью

информация о владельце: Автономная некоммерческая организация высшего образования ФИО: Грызлова Алена Фёдоровна Национали и и ответственности.

Национальный открытый институт г. Санкт-Петербург

Должность: Ректор

Дата подписания: 14.03.2022 15:51:38

Кафедра Уникальный программный ключ:

def4c1aae4956ccb60c796114b0245db1bc8**матемалических**6идественнонаучных дисциплин

РАБОЧАЯ ПРОГРАММА

учебной дисциплины «Математические методы обработки и анализа геопространственных данных на ЭВМ»

Направление подготовки 21.03.03 «Геодезия и дистанционное зондирование» Направленность (профиль подготовки) «Инфраструктура пространственных данных»

> Квалификация: бакалавр Форма обучения: заочная

Санкт-Петербург 2021

Рабочая программа учебной дисциплины «Математические методы обработки и анализа геопространственных данных на ЭВМ» составлена в соответствии с требованиями ФГОС ВО (утвержден приказом № 972 Минобрнауки России от 12.08 2020) к обязательному минимуму содержания и уровню подготовки бакалавра по направлению подготовки 21.03.03 «Геодезия и дистанционное зондирование» на основании учебного плана направления подготовки 21.03.03 «Геодезия и дистанционное зондирование» и профиля подготовки «Инфраструктура пространственных данных».

Программа рассмотрена и утверждена на заседании кафедры математических и естественнонаучных дисциплин.

Протокол № 3 от 09.03.21г.	
Зав. кафедрой	 к.т.н., доцент Боброва Л. В.
Рабочую программу подготовил:	к.т.н., доцент Боброва Л. В.

Оглавление

1. Цель и задачи дисциплины	4
2. Место дисциплины в структуре ОПОП ВО	4
3. Требования к результатам освоения дисциплины	5
4. Структура и содержание дисциплины	6
5. Образовательные технологии	7
6. Самостоятельная работа студентов	7
7. Учебно-методическое и информационное обеспечение дисциплины	8
7.1. Основная и дополнительная литература	8
7.2 Базы данных, информационно-справочные и поисковые системы	9
7.3. Перечень учебно-методических материалов, разработанных ППС кафедры	10
7.4. Вопросы для самостоятельной подготовки	10
7.5. Вопросы для подготовки к экзамену	10
8. Методические рекомендации по изучению дисциплины	12
8.1. Методические рекомендации для студента	12
8.2. Методические рекомендации для преподавателя	14
9. Материально-техническое обеспечение дисциплины	17
10. Обеспечение образовательного процесса для лиц с ограниченными возможностями	
здоровья и инвалидов	17
11. Согласование и утверждение рабочей программы дисциплины	19
12. Лист регистрации изменений	20
13. Лист ознакомления	21
Атитотания	22

1. Цель и задачи дисциплины

Шель лисшиплины

Цель изучения дисциплины — формирование знаний об основных методах математической обработки и анализа геопространственных данных на ЭВМ, методах получения информации и использования конечного результата, а также:

– формирование ОПК в сфере применения фундаментальных знаний и в области использования инструментов и оборудования.

Задачи дисциплины

Образовательные задачи дисциплины:

- сформировать знания об основных методах получения информации;
- сформировать знания об основных математических методах обработки информации;
- сформировать знания о методах анализа данных;
- сформировать умения отбора информации и решения определенных задач на компьютере.

Профессиональная задача дисциплины:

– подготовка студентов к выполнению следующих ТФ в соответствии с ПС:

ПС	ОТФ	ТФ
10.002 Специалист области инженерно- геодезических изысканий	в В Управление инженерно- геодезическими работами 6 уровень квалификации	В/01.6 Планирование отдельных видов инженерно- геодезических работ В/02.6 Руководство полевыми и камеральными инженерно-геодезическими работами В/03.6 Подготовка разделов технического отчета о выполненных инженерно-геодезических работах
10.001 Специалист сфере кадастрового учета	А Ведение и развитие пространственных данных государственного кадастра недвижимости 6 уровень квалификации	А/01.6 Внесение в государственный кадастр недвижимости (ГКН) картографических и геодезических основ государственного кадастра недвижимости

2. Место дисциплины в структуре ОПОП ВО

Дисциплина «Математические методы обработки и анализа геопространственных данных на ЭВМ» (Б1.О.07) входит в число обязательных дисциплин базовой части ОПОП ВО блока 1 «Дисциплины (модули)» учебного плана согласно ФГОС ВО для направления подготовки 21.03.03 «Геодезия и дистанционное зондирование».

Дисциплина «Математические методы обработки и анализа геопространственных данных на ЭВМ» (Б1.О.07) изучается наряду с дисциплинами: «Астрономия» (Б1.В.06), «Геодезическая астрономия» (Б1.В.12), «Инженерно-экологические изыскания» (Б1.В.ДВ.07.02), «Инженерно-гидрометеорологические изыскания» (Б1.В.ДВ.08.02).

Предшествуют освоению дисциплины: «Введение в специальность» (Б1.О.12), «Геодезия» (Б1.О.13), «Высшая геодезия» (Б1.О.14), «Космическая геодезия» (Б1.О.15).

Базируются на изучении дисциплины: ««Геоинформационные системы и технологии» (Б1.О.21), «Исследовательская работа» (Б1.В.11), «Преддипломная практика» (Б2.В.01).

3. Требования к результатам освоения дисциплины

Планируемые результаты обучения по дисциплине «Математические методы обработки и анализа геопространственных данных на ЭВМ» соотнесены с планируемыми результатами освоения ОПОП ВО.

Процесс изучения дисциплины «Математические методы обработки и анализа геопространственных данных на ЭВМ» направлен на формирование следующих компетенций:

ОПК

Код ОПК	ОПК	Индикаторы достижения ОПК
ОПК-1	ОПК-1. Способен решать задачи профессиональной деятельности применяя математические и естественно-научные знания	ИОПК-1.1. Применяет методы математического анализа и моделирования в профессиональной деятельности. ИОПК-1.2. Применяет методы теоретического и экспериментального исследования в профессиональной деятельности. ИОПК-1.3. Использует естественнонаучные и общеинженерные знания в профессиональной деятельности
ОПК-3	ОПК-3. Способен в сфере своей профессиональной деятельности проводить измерения и наблюдения, обрабатывать и представлять полученные результаты	ИОПК-3.1. Применяет естественнонаучные знания в решении задач профессиональной деятельности. ИОПК-3.2. Выполняет топографо-геодезические и фотограмметрические измерения, необходимые при решении задач профессиональной деятельности. ИОПК-3.3. Проводит обработку результатов топографогеодезических измерений и производит на их основе инженерные расчеты объектов профессиональной деятельности

Ожидаемые результаты:

в результате изучения дисциплины бакалавры приобретут

Знания:

- способы получения геопространственной информации;
- основные математические методы обработки информации на компьютере.

Умения:

- планировать и выполнять работы по сбору геодезической информации в различных регионах;
- использовать различное программное обеспечение для обработки различной информации.

Представления:

- об основных источниках геопространственной информации;
- об основных методиках получения геопространственной информации;
- о технике, позволяющей получить массивы данных;
- способах и методах обработки и анализа информации;
- об использовании результатов обработки в профессиональной деятельности.

Навыки:

- использования приборов для получения массивов данных;
- использования материалов дистанционного зондирования и ГИС-технологий;
- использования методов и программ обработки статистической информации.

4. Структура и содержание дисциплины

Структура преподавания дисциплины

Общая трудоемкость дисциплины «Математика» для направления подготовки 21.03.03 «Геодезия и дистанционное зондирование» составляет 4 з.е. или 144 часа общей учебной нагрузки (табл. 1).

Структура дисциплины (для очной/заочной формы обучения)

Общая структура Общая трудоемкость 144/144 Аудиторные занятия (всего) 54/16 20/8 Лекции Практические занятия 34/8 Самостоятельная работа 54/119 Текущая аттестация Тест, контрольная работа Промежуточная аттестация Экзамен

Тематическая структура

	Всег Семест Всег		Виды учебной нагрузки (в часах)					
№	Раздел/тема дисциплины	р (курс)	о часо в	Лекци и	Практическ ие занятия	Лабораторн ые занятия	Самостоятельн ая работа	Форма контроля
1	Геопространственн ые данные	5(3)/ 7(4)	36/48	6/4	12/4	_	18/40	Тестировани е, контрольная работа
2	Методы анализа геопространственн ых данных	5(3)/ 1(1)	38/44	8/2	12/2	_	18/40	Тестировани е, контрольная работа
3	Цифровая обработка статистических данных	25(3)/ 7(4)	34/43	6/2	10/2	_	18/39	Тестировани е, контрольная работа
4	Промежуточная аттестация	5(3)/ 7(4)	36/9	_	-	_	_	Экзамен
	Итого	_	144/1	20/8	34/8	_	54/119	36/9

Содержание дисциплины

Содержание разделов/тем дисциплины представлено в табл. 2.

Таблица 2.

Таблица 1.

Солержание лиспиплины

No	Наименование		D
п/	раздела	Содержание раздела	Результат обучения, формируемые компетенции
П	дисциплины		формируемые компетенции
1.	Геопространств енные данные	Понятия о геопространственных объектах. Характеристики геопространственных объектов. Описание геопространственных объектов. Атрибуты геопространственных объектов. Модели геопространственных данных. Преобразования геопространственных объектов. Основные источники геопространственных данных. Базовые геопространственные данные. Точечные, линейные и площадные координатные модели. Атрибутивные модели.	Знать: основные понятия теории матриц, системы координат на прямой, плоскости и в пространстве, формы описания прямых на плоскости Уметь: решать системы алгебраических уравнений, вычислять углы и расстояния между прямыми Владеть: способами вычисления определителей матриц п-го порядка, математическим аппаратом, позволяющим производить различные операции с векторами ОПК-1, ОПК-3

№ п/ п	Наименование раздела дисциплины	Содержание раздела	Результат обучения, формируемые компетенции
2.	Методы анализа геопространстве нных данных	Понятие анализа данных. Понятие обработки данных. Системы обработки информации. Этапы снижения размерности пространства признаков. Связи между геопространственными объектами. Методы группировки значений признаков геопространственных объектов. Корреляционный и регрессионный анализ	Знать: основы работы со статистической информацией, основы корреляционного и регрессионного анализа. Уметь: осуществлять анализ статистических данных Владеть: методикой раскрытия неопределенностей, методикой расчета коэффициентов корреляции и коэффициентов регрессии ОПК-1, ОПК-3
3.	Цифровая обработка статистических данных	Априорная интерпретация данных дистанционного зондирования Земли. Масштабная нормализация. Обработка радиолокационных снимков. Инструменты обработки статистических данных на компьютере.	Знать: понятие производной и дифференциала функции Уметь: находить производную фоп Владеть: методикой применения производной функции для решения прикладных задач ОПК-1, ОПК-3

5. Образовательные технологии

В соответствии с требованиями ФГОС ВО удельный вес занятий, проводимых в интерактивных формах, определяется главной целью (миссией) программы, особенностью контингента обучающихся и содержанием конкретных дисциплин, и в целом в учебном процессе они должны составлять не менее 20% аудиторных занятий. Используемые в процессе изучения дисциплины образовательные технологии представлены в табл. 3.

Таблица 3. Образовательные технологии

No	Разделы	0.5	
пп	Темы	Образовательные технологии	
1.	Геопространственные данные	Интерактивная лекция с использованием мультимедиа Участие в вебинаре Использование электронного учебника, электронной библиотеки возможностей сети Интернет	
2	Методы анализа геопространственных данных	Интерактивная лекция с использованием мультимедиа. Использование электронного учебника, электронной библиотеки, возможностей сети Интернет. Участие в вебинаре.	
3	В Цифровая обработка статистических данных Интерактивная лекция с использованием мультимедиа Участие в вебинаре Проведение практической работы с использованием системы Moodl Использование электронного учебника, электронной библиоте возможностей сети Интернет		

6. Самостоятельная работа студентов

Сведения по организации самостоятельной работы студентов в процессе изучения дисциплины представлены в табл. 4

Таблица 4. Характеристика самостоятельной работы студентов

Наименование Компете № п/п Вид самостоятельной работы Часы раздела дисциплины нции Работа с учебным пособием, электронным учебно-методическим комплексом, Геопространствен-ОПК-1, 1. 18/40 дополнительной литературой и ресурсами ОПК-3 ные данные Интернета. Ответы на контрольные вопросы; компьютерное тестирование Работа с учебным пособием, электронным ОПК-1, Методы анализа 2 18/40 учебно-методическим комплексом, ОПК-3 геопространственных

№ п/п	Наименование раздела дисциплины	Вид самостоятельной работы	Часы	Компете нции
	данных	дополнительной литературой и ресурсами Интернета. Ответы на контрольные вопросы; компьютерное тестирование, выполнение заданий контрольной работы		
3	Цифровая обработка статистических данных	Работа с учебным пособием, электронным учебно-методическим комплексом, дополнительной литературой и ресурсами Интернета. Ответы на контрольные вопросы; компьютерное тестирование, выполнение практических работ в Excel с инструментами корреляционного и регрессионного анализа	18/39	ОПК-1, ОПК-3

7. Учебно-методическое и информационное обеспечение дисциплины

7.1. Основная и дополнительная литература

Основная литература

- 1. Беликов, А. Б. Математическая обработка результатов геодезических измерений: Учебное пособие / Беликов А.Б., Симонян В.В., 3-е изд., (эл.) Москва :МИСИ-МГСУ, 2017. 430 с.: ISBN 978-5-7264-1568-0. Текст : электронный. URL: https://znanium.com/catalog/product/968762 (дата обращения: 22.07.2021). Режим доступа: по подписке.
- 2. Маркузе, Ю. И. Теория математической обработки геодезических измерений: учебное пособие для вузов / Ю. И. Маркузе, В. В. Голубев; под редакцией Ю. И. Маркузе. Москва: Академический Проект, Альма Матер, 2015. 248 с. ISBN 978-5-8291-1136-6. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/36737.html (дата обращения: 22.07.2021). Режим доступа: для авторизир. пользователей.

Дополнительная литература

- 1. Шпаков, П. С. Математическая обработка результатов измерений: учебное пособие / П. С. Шпаков, Ю. Л. Юнаков. Красноярск: Сибирский федеральный университет, 2014. 410 с. ISBN 978-5-7638-3077-4. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/84372.html (дата обращения: 22.07.2021). Режим доступа: для авторизир. пользователей.
- 2. Садчиков, П. Н. Модели и методы математической обработки результатов геодезических измерений (лабораторный практикум) / П. Н. Садчиков. Астрахань : Астраханский государственный архитектурно-строительный университет, ЭБС АСВ, 2020. 103 с. ISBN 978-5-93026-108-0. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/100833.html (дата обращения: 22.07.2021). Режим доступа: для авторизир. пользователей.

Нормативные и регламентирующие документы

- 1. Федеральный закон № 431-ФЗ «О геодезии, картографии и пространственных данных и о внесении изменений в отдельные законодательные акты Российской Федерации» (ред. 03.08.2018).
- 2. ГОСТ Р 51606-2000 «Карты цифровые топографические. Система классификации и кодирования цифровой картографической информации. Общие требования» (принят и введен в действие Постановлением Госстандарта России от 17.05.2000 № 137-ст).
- 3. ГОСТ Р 52155-2003 «Географические информационные системы федеральные, региональные, муниципальные. Общие технические требования» (принят и введен в действие Постановлением Госстандарта России от 09.12.2003 № 359-ст)

- 4. ГОСТ Р 52293-2004 «Геоинформационное картографирование. Система электронных карт. Карты электронные топографические. Общие требования» (утв. Приказом Ростехрегулирования от 29.12.2004 № 137-ст).
- 5. ГОСТ Р 52438-2005 «Географические информационные системы. Термины и определения» (утв. Приказом Ростехрегулирования от 29.12.2005 № 423-ст).
- 6. ГОСТ Р 52571-2006 «Географические информационные системы. Совместимость пространственных данных. Общие требования» (утв. и введен в действие Приказом Ростехрегулирования от 28.09.2006 № 214-ст).
- 7. ГОСТ Р 52572-2006 «Географические информационные системы. Координатная основа. Общие требования» (утв. и введен в действие Приказом Ростехрегулирования от 28.09.2006 № 215-ст).
- 8. ГОСТ Р 52573-2006 «Географическая информация. Метаданные» (утв. и введен в действие Приказом Ростехрегулирования от 28.09.2006 № 216-ст).
- 9. ГОСТ Р 53339-2009 «Данные пространственные базовые. Общие требования» (утв. Приказом Ростехрегулирования от 20.04.2009 № 137-ст).
- 10. ГОСТ Р ИСО 19105-2003 «Географическая информация. Соответствие и тестирование» (утв. Постановлением Госстандарта России от 09.12.2003 № 359-ст).
- 11. Распоряжение Правительства РФ от 21.08.2006 № 1157-р «О Концепции создания и развития инфраструктуры пространственных данных Российской Федерации».

7.2 Базы данных, информационно-справочные и поисковые системы

Лицензионные электронные ресурсы (ЭБС)

1. http://www.iprbookshop.ru

Электронно-библиотечная система образовательных изданий, в которой собраны электронные учебники, справочные и учебные пособия. Удобный поиск по ключевым словам, отдельным темам и отраслям знания.

2. http://www.znanium.com

Электронно-библиотечная система образовательных изданий, в которой собраны электронные учебники, справочные и учебные пособия. Удобный поиск по ключевым словам, отдельным темам и отраслям знания.

3. http://www.biblioclub.ru

«Университетская библиотека онлайн». Интернет-библиотека, фонды которой содержат учебники и учебные пособия, периодику, справочники, словари, энциклопедии и другие издания на русском и иностранных языках. Полнотекстовый поиск, работа с каталогом, безлимитный постраничный просмотр изданий, копирование или распечатка текста (постранично), изменение параметров текстовой страницы, создание закладок и комментариев.

Интернет-ресурсы

- 1. Официальный сайт Международного общества содействия развитию фотограмметрии и дистанционного зондирования. Режим доступа: http://www.isprs.org
- 2. Сайт научного электронного журнала по геодезии, картографии и навигации. Режим доступа: http://www.geoprofi.ru
- 3. Сайт Московского государственного университета геодезии и картографии (МИИГАиК). Режим доступа: http://www.miigaik.ru
- 4. Российская астрономическая сеть. Режим доступа: http://astronet.ru
- 5. Сайт Центрального научно-исследовательского института геодезии, аэросъемки и картографии (ЦНИИГАиК). Режим доступа: https://cniigaik.ru/
- 6. Форум «Геодезист». Режим доступа: http:// http://geodesist.ru
- 7. Сайт Сибирского Государственного университета геосистем и технологий, г. Новосибирск. Режим доступа: http://sgugit.ru
- 8. Проект «Астрогалактика». Режим доступа: http://astrogalaxy.ru

- 9. Официальный сайт ассоциации «СРО Кадастровые инженеры». Режим доступа: http://www.roscadastre.ru
- 10. «Астрофорум» астрономический портал. Режим доступа: http://astronomy.ru
- 11. «Астрономия 21 век». Режим доступа: https://astro21vek.ru
- 12. Сайт компании «Геокосмос». Режим доступа: http://www.geokosmos.ru
- 13. Официальный сайт государственной корпорации «Роскосмос». Режим доступа: https://www.roscosmos.ru
- 14. Сайт Государственного университета по землеустройству. Режим доступа: http://www.guz.ru
- 15. Официальный сайт Министерства сельского хозяйства Российской Федерации. Режим доступа: www.mcx.gov.ru
- 16. Официальный сайт Министерства экономического развития Российской Федерации. Режим доступа: www.economy.gov.ru
- 17. Геоинформационный портал ГИС-ассоциации. Режим доступа: www.gisa.ru
- 18. Официальный сайт Росреестра РФ. Режим доступа: https://rosreestr.gov.ru
- 19. Сайт Научного геоинформационного центра РАН. Режим доступа: http://www.ngic.ru
- 20. Официальный сайт КБ «Панорама». Режим доступа: http://www.gisinfo.ru
- 21. Официальный сайт фирмы «Ракурс» разработчика ПО по фотограмметрии. Режим доступа: http://www.racurs.ru
- 22. Официальный сайт фирмы «Hexagon Geospatial» разработчика ПО по фотограмметрии. Режим доступа: http://www. hexagongeospatial.com
- 23. Официальный сайт Американского общества фотограмметрии и дистанционного зондирования. Режим доступа: http://www.asprs.org

7.3. Перечень учебно-методических материалов, разработанных ППС кафедры

- материалы дистанционного курса для системы Moodle:
- теоретический материал;
- методические указания к выполнению контрольной работы;
- методические указания к выполнению практических работ;
- тестовые задания.

7.4. Вопросы для самостоятельной подготовки

Разделы	Вопросы для самостоятельного изучения	
Геопространственные данные	Атрибуты геопространственных объектов.	
	Модели геопространственных данных.	
Методы анализа	Matauri Pavillumonku ahahahun Hayahakan Faalimaataahataahun ya 67 aktab	
геопространственных данных	Методы группировки значений признаков геопространственных объектов.	
Цифровая обработка	Моснитобноя нормонировния	
статистических данных	Масштабная нормализация	

7.5. Вопросы для подготовки к экзамену

Раздел № 1. Геопространственные данные.

- 1. Понятия о геопространственных объектах.
- 2. Характеристики геопространственных объектов.
- 3. Описание геопространственных объектов.
- 4. Атрибуты геопространственных объектов.
- 5. Модели геопространственных данных.
- 6. Преобразования геопространственных объектов.
- 7. Основные источники геопространственных данных.
- 8. Базовые геопространственные данные.
- 9. Точечные, линейные и площадные координатные модели.

10. Атрибутивные модели.

Раздел № 2. Методы анализа геопространственных данных

- 11. Понятие анализа данных.
- 12. Понятие обработки данных.
- 13. Системы обработки информации.
- 14. Этапы снижения размерности пространства признаков.
- 15.Связи между геопространственными объектами.
- 16. Методы группировки значений признаков геопространственных объектов.
- 17. Факторный анализ.
- 18. Корреляционный анализ.
- 19. Регрессионный анализ.

Раздел № 3 Цифровая обработка статистических данных

- 20. Дайте определение признаков-факторов и результативных признаков.
- 21. В каких случаях используют функциональную, а в каких корреляционную зависимость?
- 22. Дайте определение коэффициента парной линейной корреляции.
- 23. В каких пределах может изменяться коэффициент парной корреляции?
- 24. Как по значению коэффициента корреляции можно определить, есть ли корреляционная зависимость случайных величин?
- 25. Что означает знак «минус» у коэффициента парной корреляции?
- 26. Назовите функцию, используемую в Excel для расчета коэффициента парной корреляции.
- 27. В каких случаях строят корреляционную матрицу?
- 28. Как рассчитываются параметры корреляционной матрицы?
- 29. Назовите процедуру, которая позволяет в Пакете анализа Excel оценить множественную корреляцию.
- 30. В каких случаях при обработке статистической информации используется регрессионный анализ?
- 31. Чем отличаются задачи аппроксимации и интерполяции?
- 32. В каком случае регрессия называется линейной? Нелинейной?
- 33. Какой метод используется для определения коэффициентов регрессии?
- 34. При обработке статистических данных получены коэффициенты регрессии $a^* = 3.5$; $b^* = -0.8$. Напишите уравнение линейной регрессии.
- 35. При обработке статистических данных получены коэффициенты линейной регрессии $a^* = 3.5$; $b^* = -0.8$. Осуществите прогноз исследуемого процесса для X = 20.
- 36. Назовите функции Excel, используемые для получения уравнений линейной регрессии.
- 37. Назовите функции Excel, используемые для получения уравнений нелинейной регрессии.
- 38. В каком случае используется множественная регрессия?
- 39. Какой аппарат Excel используется для оценки параметров множественной линейной регрессии?
- 40. При обработке статистических данных получены коэффициенты регрессии $a^* = 2,9$; $b_1^* = 4,6$; $b_2^* = -1,6$. Напишите уравнение линейной регрессии.
- 41. При обработке статистических данных получены коэффициенты линейной регрессии $a^* = 2.9$; $b_1^* = 4.6$; $b_2^* = -1.6$. Осуществите прогноз исследуемого процесса для X = 15.

8. Методические рекомендации по изучению дисциплины

8.1. Методические рекомендации для студента

Организация самостоятельной работы студента

Самостоятельная работа студента (СРС) призвана закрепить и углубить полученные знания и навыки, подготовить его к аттестации по дисциплине «Математические методы обработки и анализа геопространственных данных на ЭВМ», а также сформировать знания, умения и навыки в соответствии с компетенциями изучаемой дисциплины.

Следует понимать, что СРС является одной из форм индивидуальной работы и формирует компетенции не только в сфере специальных знаний и умений, но также личностные и организационные качества будущего специалиста.

В зависимости от того, что предусмотрено РПД, могут иметь место следующие виды СРС:

- работа на сессиях вне расписания основных аудиторных занятий;
- внеаудиторные контакты с преподавателем, в том числе вебинары и онлайн консультации;
- выполнение в домашних условиях письменных работ: курсовых, контрольных и/или реферативных;
- онлайн тестирование и интерактивное взаимодействие с ЭОР дисциплины и ППС в «Moodle».

Виды заданий для СРС, их содержание и характер могут иметь вариативный и дифференцированный характер, учитывать специфику направления подготовки, рабочую программу изучаемой дисциплины, а также личностные качества студента. Основными видами заданий для СРС являются: письменная контрольная работа, реферат на заданную тему, курсовая работа, доклад на семинаре или конференции, компьютерная презентация к докладу, выпускная квалификационная работа.

В зависимости от цели, объема, конкретной тематики самостоятельной работы, уровня сложности, уровня умений студентов, те или иные задания СРС могут осуществляться как индивидуально, так и группами студентов.

Для контроля и оценки результатов СРС могут использоваться семинарские занятия, тестирование, проверка контрольных письменных работ и/или рефератов, а также защита курсовых работ (в зависимости от того, что предусмотрено рабочей программой дисциплины) в аудиторном режиме во время сессии, в онлайн режиме, а также в интерактивном режиме в среде «Moodle». Вне зависимости от формата критериями результатов самостоятельной внеаудиторной работы студента являются:

- уровень освоения студентами учебного материала;
- умения студента использовать теоретические знания при выполнении практических задач;
 - сформированность требуемых знаний, умений и навыков
 - обоснованность четкость изложения материла и надлежащее его оформление.

В процессе контроля результатов СРС необходимо стимулировать активную познавательную деятельность и интерес к дисциплине, формировать творческое мышление, поощрять самостоятельность суждений, учить делать выводы для практической деятельности. Следует направлять внимание студентов на развитие навыков самостоятельной исследовательской работы, в первую очередь поиска и подбора необходимых теоретических положений, позволяющих адекватно решать практические залачи.

При текущем контроле успеваемости и промежуточной аттестации рекомендуется в качестве оценочных средств использовать тестовые задания, реализованные в интерактивной среде «Moodle», в том числе в режиме удаленного тестирования.

По мере изучения дисциплины следует постоянно накапливать в электронном виде персональные комплекты заданий и решений, формировать собственное портфолио, которое в дальнейшем может быть использовано при выполнении и защите ВКР.

Подготовка к лекциям и их проработка в ходе СРС

Из расписания занятий на сессии и вводной лекции следует уяснить тематику и сроки проведения занятий по дисциплине «Математические методы обработки и анализа геопространственных данных на ЭВМ», а также список литературы, рекомендованной по данной дисциплине.

Прочитать материал лекции, изложенный в основной литературе, и уяснить общий характер материала, его наиболее сложные фрагменты.

В конспекте лекции отражать основное научное, теоретическое и практическое содержание дисциплины, концентрировать внимание на наиболее проблемных вопросах. Лекции, предшествующие и обеспечивающие практические занятия по соответствующим темам, должны отрабатываться наиболее тщательно и своевременно.

Необходимо активно работать в ходе лекции, развивая познавательную деятельность и формируя творческое мышление. В процессе приобретения знаний использовать противопоставления, сравнения, обобщения. В конце каждой лекции необходимо усвоить рекомендации по организации самостоятельной работы.

При обучении по заочной форме необходимо учитывать, что вопросы преподавателем излагаются кратко и оставлять больше места для пополнения конспекта при самостоятельной работе.

Сопровождаемые компьютерными презентациями лекции с использованием мультимедиа проектора желательно переписать в собственную информационную базу и использовать в процессе самостоятельной работы.

Для успешного усвоения материала в процессе самостоятельной работы необходимо использовать соответствующие ссылки на ресурсы сети «Интернет».

Особенности заочной формы обучения

Студенты, обучающиеся по заочной и заочной сокращенной формам, в большинстве своем работают по специальности и имеют профильное среднее профессиональное образование. Поэтому при проведении как лекционных, так и семинарских занятий следует опираться на ранее полученные знания, умения и навыки, а также практический опыт, приобретенный в ходе работы. По сути, речь идет о развитии основополагающих компетенций, определенных ФГОС ВО.

Ограниченный объем аудиторных занятий следует максимально компенсировать в рамках самостоятельной работы. Концентрированный материал, даваемый на лекциях, в процессе выполнения заданий самостоятельной работы необходимо подкреплять работой с основной и справочной литературой.

Ввиду ограниченности во времени и особенностей производственной деятельности студентов, работающих по специальности, проверка усвоения материала и текущая аттестация осуществляются в режиме онлайн и/или в интерактивной среде «Moodle».

Прохождение практик, выполнение курсовых, контрольных работ, написание рефератов (в зависимости, от того что предусмотрено РПД), а также подготовку к семинарским занятиям целесообразно совмещать с процессом трудовой деятельности студента на базе предприятия. Для этого должно быть письменное подтверждение руководителя (начальника) организации о согласии и возможности подобного совмещения. Учитывая реальную должность студента на предприятии, подобное совмещение повышает эффективность самостоятельной работы в части освоения вариативной части дисциплины, максимального приближая достигнутые результаты к потребностям предприятия.

Организация работы с учебной и научной литературой в рамках СРС

Ознакомиться со структурой рекомендуемого учебника, учебного пособия или научного издания, составить общее представление о его содержании. Ознакомиться с

содержанием и введением, определить, каким разделам и/или темам для своей будущей профессиональной деятельности необходимо уделить большее внимание.

Проработать нужные разделы, постараться понять изложенный в них материал на концептуальном уровне. Поработать с приложениями: предметным и именным указателями, указателем иностранных слов, толковым словарем. Познакомиться с содержанием врезок, в которых содержатся информация к размышлению, дополнительное чтение, фрагменты из истории становления и развития дисциплины.

Поработать с ресурсами сети «Интернет», начав с адресов, указанных в пособии и информационно-справочном разделе курса, а затем запросив информацию с других сайтов.

В назначенное время принять участие в вебинаре по соответствующей теме либо ознакомиться с ним в интерактивной среде «Moodle». Выполнить соответствующие контрольные и /или тестовые задания в интерактивной среде «Moodle», в зависимости от того, какой контроль предусмотрен РПД, проверить правильность выполнения в режиме онлайн или отправить на проверку преподавателю.

По мере продвижения вперед не забывать регулярно «оглядываться назад», повторяя содержание изученного материала и расширяя понимание содержания дисциплины с использованием сети «Интернет».

8.2. Методические рекомендации для преподавателя

Обеспечение компетентностного подхода в преподавании дисциплины

При организации учебного процесса необходимо обеспечивать интеграцию теории и практики. Это означает формирование знаний, умений и навыков, используя различные стили обучения. Студенты должны научиться осознавать, как они чему-то научились и как можно интенсифицировать собственное обучение.

Принципы методики обучения:

- весь учебный процесс должен быть ориентирован на достижение задач, выраженных в форме компетенций, освоение которых является результатом обучения;
- формирование так называемой «области доверия» между студентами и преподавателем;
- студенты должны сознательно взять на себя ответственность за собственное обучение, что достигается созданием такой среды обучения, которая формирует эту ответственность. Для этого студенты должны иметь возможность активно взаимодействовать с преподавателем непосредственно на контактных занятиях во время учебных сессий, в онлайн режиме, а также в интерактивном режиме среды «Moodle»;
- студенту должна быть предоставлена траектория изучения дисциплины «Математические методы обработки и анализа геопространственных данных на ЭВМ», которая предусматривает развитие навыков самостоятельного поиска, обработки и использования информации. Необходимо отказаться от практики «трансляции знаний»;
- студенты должны иметь возможность практиковаться в освоенных компетенциях, используя реальные приборы и инструменты в процессе прохождения практик и написания курсовых работ, а также виртуальные компьютерные тренажеры и/или симуляторы;
- студентам должна быть предоставлена возможность развивать компетенцию, которая получила название «учиться тому, как нужно учиться», иными словами, нести ответственность за собственное обучение и его результаты;
- индивидуализация учебного процесса: предоставление каждому обучающемуся возможность осваивать компетенции в индивидуальном темпе.

Планируя организацию учебного процесса и методы, следует всегда помнить, что студенты запоминают 20 % услышанного, 40 % увиденного, 60 % увиденного и услышанного, 80% увиденного, услышанного и сделанного нами самими.

План изучения курса

Текущая работа преподавателя складывается из следующих основных этапов: подготовка материалов, проведение аудиторных занятий, проведение вебинаров в онлайн режиме, работа в интерактивном режиме в среде «Moodle».

Подготовка материалов предполагает:

- периодическое обновление авторских лекционных курсов, электронных курсов лекций и сопутствующих им комплектов презентаций, чтобы обеспечить актуальность информации и ее соответствие требованиям ФГОС ВО, ОПОП ВО, РУП и РПД, а также формам и техническим средствам, используемым для организации учебного процесса по дисциплине «Математические методы обработки и анализа геопространственных данных на ЭВМ»;
- подготовку учебных материалов для проведения лекций, семинарских занятий, вебинаров, текущей аттестации, а также учебных материалов для прохождения студентами практик и выполнения ими курсовых, контрольных и/или реферативных работ, предусмотренных РПД;
- подготовку учебных и методических материалов для проведения семинарских занятий, выполнения письменных контрольных работ, написания рефератов, прохождения студентами компьютерного тестирования и практик, в зависимости от того, что предусмотрено РПД;
- подготовку и размещение учебных материалов в ЭОР в интерактивной среде «Moodle».

Изложение преподавателем лекционного материала в аудиторном режиме и в онлайн режиме вебинара должно сопровождаться комплектом презентаций, используя необходимое материально-техническое оснащение, предусмотренное для дисциплины «Математические методы обработки и анализа геопространственных данных на ЭВМ».

Поскольку при заочной форме обучения основной акцент делается на самостоятельном изучении дисциплины, особое внимание преподавателю необходимо уделить организации и планированию СРС, используя ИОС Института, ЭБС и ЭОР.

Мощной технологией, позволяющей хранить и передавать основной объём изучаемого материала, являются электронные учебники и справочники, доступ к которым обеспечивается студентам при работе с ЭБС. Индивидуальная работа студента с ними обеспечивает глубокое усвоение и понимание материала. Дополнение возможностей ЭБС ЭОР интерактивной среды «Moodle» обеспечивает индивидуальную траекторию освоения студентами дисциплины в рамках РПД.

Лекции

Лекции, в том числе размещенные в интерактивной среде «Moodle», должны:

- давать систематизированные основы научных знаний по дисциплине;
- раскрывать взаимосвязь дисциплины «Математические методы обработки и анализа геопространственных данных на ЭВМ» со смежными дисциплинами, предусмотренными учебным планом по направлению подготовки;
- раскрывать состояние и перспективы теоретического и практического развития дисциплины как области знаний;
- концентрировать внимание студентов на наиболее сложных и узловых вопросах и проблемах дисциплины.

Изложение лекций должно носить традиционный или проблемный стиль: ставить вопросы и предлагать подходы к их решению. Необходимо стимулировать активную познавательную деятельность и интерес к дисциплине, формировать творческое мышление. Прибегать к противопоставлениям и сравнениям, использовать обобщение в процессе обучения. Активировать внимание обучаемых путём постановки проблемных вопросов. Стимулировать их мыслительную деятельность, раскрывая взаимосвязи между различными явлениями, указывая на существующие противоречия.

Лекционный курс в аудиторном и интерактивном режимах должен активно использовать презентации, чтобы лекционный материал, представленный в 3D-формате, более адекватно воспринимался и усваивался студентами.

Курс лекций целесообразно дополнить учебным пособием, подготовленным ППС кафедры.

Практические (семинарские) занятия

Цель проведения семинарских занятий — научить студентов применять методологию и теоретические положения изучаемой дисциплины в будущей практической деятельности согласно своему направлению подготовки. Семинарские занятия обеспечивают контроль уровня усвоения материала и готовят студентов к промежуточной аттестации по дисциплине.

Методика проведения семинарских занятий должна способствовать усвоению знаний, выработке умений и навыков в соответствии с компетенциями ФГОС ВО, предусмотренными для дисциплины.

На семинарских занятиях студенты должны осваивать как методики, концепции и технологии, актуальные в их будущей профессиональной деятельности, так и новейшие разработки, появление которых планируется в ближайшие годы.

Студентов нужно учить не только стандартным процедурам, но и в большей степени поисковой деятельности в процессе решения практических задач. В поисковых задачах целесообразно разумно сочетать традиционные и проблемные методы обучения.

Письменные контрольные работы и рефераты

Выполнение домашних письменных контрольных работ и/или рефератов, в зависимости от того, что предусмотрено РПД, является составной частью СРС студентов в процессе освоения учебной дисциплины «Математические методы обработки и анализа геопространственных данных на ЭВМ».

Написание рефератов осуществляется в часы вариативной части СРС, реферат составляет часть портфолио студента. Реферат выполняется в процессе освоения дисциплины и планируется к использованию при написании ВКР. В данном случае реализуется комплексный междисциплинарный подход к обучению, тесно увязывая содержание реферата с ГИА и практической производственной деятельностью студента. Работа над рефератом предполагает использование знаний, полученных в ходе изучения данной дисциплины и смежных с ней дисциплин, изучение основной и дополнительной литературы, использование ресурсов сети «Интернет», а также знаний, полученных в ходе прохождения практик и профессиональной деятельности.

Написание студентами рефератов регламентируется методическими указаниями, которые содержат:

- тематику рефератов по данной дисциплине;
- технические и содержательные требования к рефератам;
- требования к оформлению рефератов;
- списки рекомендуемой литературы и ресурсов сети «Интернет».

В зависимости, от того что предусмотрено РПД, домашняя письменная контрольная работа может быть сформирована как реферативная или как расчетная. Расчетная работа предполагает отдельное учебно-методическое пособие (задачник) для студентов, обучающихся по данному направлению подготовки. В задачнике приведены задания для решения задач, предусмотренных по дисциплине, описан порядок решения и даны образцы оформления.

Письменная контрольная работа, как реферативная, так и расчетная, оформляется в электронном виде и загружается для поверки в интерактивную систему «Moodle».

Учебные практики и производственная практика

Необходимость и степень использования учебных материалов данной дисциплины при прохождении учебных практик, предусмотренных РУП по направлению подготовки

бакалавров, регламентируется программами соответствующих практик и методическими указаниями по их выполнению.

При прохождении производственной практики и последующем написании ВКР использование портфолио студента (в части содержащихся в нем учебных результатов изучения данной дисциплины) зависит от выбранной студентом тематики. Необходимость и степень использования учебных материалов данной дисциплины регламентируется методическими указаниями по выполнению производственной практики и методическими указаниями по написанию ВКР по направлению подготовки.

9. Материально-техническое обеспечение дисциплины

- ИОС Института: учебный портал, интерактивная система «Moodle», ЭБС, ЭОР.
- Учебные аудитории, оснащенные ТСО, необходимыми для проведения вебинаров и практических (семинарских) занятий в интерактивном режиме.
- Аудитории, оснащенные мультимедийным оборудованием для демонстрации презентаций и видеопродукции.
- Компьютерные классы для прохождения текущей аттестации по дисциплине в режиме онлайн тестирования.

10. Обеспечение образовательного процесса для лиц с ограниченными возможностями здоровья и инвалидов

При необходимости РПД может быть адаптирована для обеспечения образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья, в том числе для дистанционного обучения.

В ходе реализации дисциплины используются следующие дополнительные методы обучения, текущего контроля успеваемости и промежуточной аттестации обучающихся в зависимости от их индивидуальных особенностей:

- для слепых и слабовидящих:
- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением, или могут быть заменены устным ответом;
- обеспечивается индивидуальное равномерное освещение (освещенность должна составлять не менее 300 лк);
- для выполнения задания при необходимости предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств;
- письменные задания оформляются увеличенным шрифтом;
- экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.
 - для глухих и слабослышащих:
- лекции оформляются в виде электронного документа, либо предоставляется звукоусиливающая аппаратура индивидуального пользования;
- письменные задания выполняются на компьютере в письменной форме;
- экзамен и зачёт проводятся в письменной форме на компьютере; возможно проведение в форме тестирования.
 - для лиц с нарушениями опорно-двигательного аппарата:
- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением;
- экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.

При необходимости предусматривается увеличение времени для подготовки ответа.

Процедура проведения промежуточной аттестации для обучающихся устанавливается с учётом их индивидуальных психофизических особенностей. Промежуточная аттестация может проводиться в несколько этапов.

При проведении процедуры оценивания результатов обучения предусматривается использование технических средств, необходимых в связи с индивидуальными особенностями обучающихся. Эти средства могут быть предоставлены университетом, или могут использоваться собственные технические средства.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети «Интернет» для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации:

- для слепых и слабовидящих:
- в печатной форме увеличенным шрифтом;
- в форме электронного документа;
- в форме аудиофайла.
 - для глухих и слабослышащих:
- в печатной форме;
- в форме электронного документа.
 - для обучающихся с нарушениями опорно-двигательного аппарата:
- в печатной форме;
- в форме электронного документа;
- в форме аудиофайла.

Учебные аудитории для всех видов контактной и самостоятельной работы, библиотека и иные помещения для обучения должны быть оснащены специальным оборудованием и учебными местами с техническими средствами обучения:

- для слепых и слабовидящих:
- устройства для сканирования и чтения с камерой «SARA CE»;
- дисплеи Брайля «РАС Mate 20»;
- принтеры Брайля «EmBraille ViewPlus»;
 - для глухих и слабослышащих:
- автоматизированные рабочие места для людей с нарушением слуха и слабослышащих;
- акустический усилитель и колонки.
 - для обучающихся с нарушениями опорно-двигательного аппарата:
- передвижные, регулируемые эргономические парты СИ-1;
- компьютерная техника со специальным программным обеспечением.

11. Согласование и утверждение рабочей программы дисциплины

Рабочая программа учебной дисциплины «Математические методы обработки и анализа геопространственных данных на ЭВМ» разработана в соответствии с требованиями ФГОС ВО (утвержден приказом № 972 Минобрнауки России от 12.08 2020) к обязательному минимуму содержания и уровню подготовки бакалавра по направлению подготовки 21.03.03 «Геодезия и дистанционное зондирование» на основании учебного плана направления подготовки 21.03.03 «Геодезия и дистанционное зондирование» и профиля подготовки «Инфраструктура пространственных данных».

	Автор программы – <u>к.т.н., доцент Бобро</u>	ва Л. В.	
	25.01.2021 г. (дата)	(подпись)	
естест	Программа рассмотрена и утверждена веннонаучных дисциплин	на заседании кафе	дры математических
	Протокол № 3 от 09.03.21г.		
	Зав. кафедрой		Боброва Л. В.
	Декан факультета		Пресс И. А.
	Согласовано		
	Проректор по учебной работе		<u>Тихон М. Э.</u>

И

12. Лист регистрации изменений

Номер изменения	Дата	Страницы с изменениями	Перечень и содержание откорректированных разделов программы
1	01.08.2021	8-11	7.1, 7.2

13. Лист ознакомления

Фамилия, инициалы	Должность	Дата

Аннотация

Дисциплина «Математические методы обработки и анализа геопространственных данных на ЭВМ» (Б1.О.07) реализуется кафедрой математических и естественнонаучных лиспиплин.

Дисциплина «Математические методы обработки и анализа геопространственных данных на ЭВМ» (Б1.О.07) входит в число обязательных дисциплин базовой части ОПОП ВО блока 1 «Дисциплины (модули)» учебного плана согласно ФГОС ВО для направления подготовки 21.03.03 «Геодезия и дистанционное зондирование».

По дисциплине предусмотрена промежуточная аттестация в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 з.е.

Цель дисциплины

Цель изучения дисциплины — формирование знаний об основных методах математической обработки и анализа геопространственных данных на ЭВМ, методах получения информации и использования конечного результата, а также:

– формирование ОПК в сфере применения фундаментальных знаний и в области использования инструментов и оборудования.

Задачи дисциплины

Образовательные задачи дисциплины:

- сформировать знания об основных методах получения информации;
- сформировать знания об основных математических методах обработки информации;
- сформировать знания о методах анализа данных;
- сформировать умения отбора информации и решения определенных задач на компьютере.

Профессиональная задача дисциплины:

– подготовка студентов к выполнению следующих ТФ в соответствии с ПС:

ПС	ОТФ	ТФ
10.002 Специалист в области инженерно-геодезических изысканий	В Управление инженерно- геодезическими работами 6 уровень квалификации	В/01.6 Планирование отдельных видов инженерно- геодезических работ В/02.6 Руководство полевыми и камеральными инженерно-геодезическими работами В/03.6 Подготовка разделов технического отчета о выполненных инженерно-геодезических работах
10.001 Специалист в сфере кадастрового учета	А Ведение и развитие пространственных данных государственного кадастра недвижимости 6 уровень квалификации	А/01.6 Внесение в государственный кадастр недвижимости (ГКН) картографических и геодезических основ государственного кадастра недвижимости

Планируемые результаты обучения по дисциплине «Математические методы обработки и анализа геопространственных данных на ЭВМ» соотнесены с планируемыми результатами освоения ОПОП ВО.

Процесс изучения дисциплины «Математические методы обработки и анализа геопространственных данных на ЭВМ» направлен на формирование следующих компетенций:

ОПК

Код ОПК	ОПК	Индикаторы достижения ОПК
ОПК-1	ОПК-1. Способен решать задачи профессиональной деятельности применяя математические и естественно-научные знания	ИОПК-1.1. Применяет методы математического анализа и моделирования в профессиональной деятельности. ИОПК-1.2. Применяет методы теоретического и экспериментального исследования в профессиональной деятельности. ИОПК-1.3. Использует естественнонаучные и общеинженерные знания в профессиональной деятельности
ОПК-3	ОПК-3. Способен в сфере своей профессиональной деятельности проводить измерения и наблюдения, обрабатывать и представлять полученные результаты	ИОПК-3.1. Применяет естественнонаучные знания в решении задач профессиональной деятельности. ИОПК-3.2. Выполняет топографо-геодезические и фотограмметрические измерения, необходимые при решении задач профессиональной деятельности. ИОПК-3.3. Проводит обработку результатов топографогеодезических измерений и производит на их основе инженерные расчеты объектов профессиональной деятельности

Ожидаемые результаты:

в результате изучения дисциплины бакалавры приобретут

Знания:

- способы получения геопространственной информации;
- основные математические методы обработки информации на компьютере.

Умения:

- планировать и выполнять работы по сбору геодезической информации в различных регионах;
- использовать различное программное обеспечение для обработки различной информации.

Представления:

- об основных источниках геопространственной информации;
- об основных методиках получения геопространственной информации;
- о технике, позволяющей получить массивы данных;
- способах и методах обработки и анализа информации;
- об использовании результатов обработки в профессиональной деятельности.

Навыки:

- использования приборов для получения массивов данных;
- использования материалов дистанционного зондирования и ГИС-технологий;
- использования методов и программ обработки статистической информации.